Set Code :	T2
Booklet Code :	A

PHYSICS

51.	. Two quantities A and B are related by the relation $A/B = m$ where m is linear mass density a force. The dimensions of B will be	nd A is
	(1) same as that of latent heat (2) same as that of pressure	
	(3) same as that of work (4) same as that of momentum	
52.	The dimensional formula of capacitance in terms of M, L, T and I is	
	(1) $[ML^2T^2I^2]$ (2) $[ML^{-2}T^4I^2]$ (3) $[M^{-1}L^3T^3I]$ (4) $[M^{-1}L^{-2}T^4I^2]$	
53.		*
	(1) $l+m+n=1$ (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$ (4) $lmn=1$	
54.	The angle between i+j and j+k is (1) 0° (2) 90° (3) 45° (4) 60°	
55.	A particle is moving eastwards with a velocity of 5 ms ⁻¹ . In 10 seconds the velocity charmonic 5 ms ⁻¹ northwards. The average acceleration in this time is	iges to
2	(1) $\frac{1}{\sqrt{2}}$ ms ⁻² towards north-west (2) zero	
*	(3) $\frac{1}{2}$ ms ⁻² towards north (4) $\frac{1}{\sqrt{2}}$ ms ⁻² towards north-east	
56.	The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the follow correct?	ving is
	(1) Force varies with time in a quadratic manner.	
	(2) Force is time-dependent.	
	(3) The velocity of the particle is proportional to time.	
	(4) The displacement of the particle is proportional to t.	
57.	A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part o m/4 remains stationary. The velocity of the other part is (1) 2v (3) 3v/4 (4) 4v/3	fmass

T2	Set Code :				
A	Booklet Code :				
	· ·		100		

58.	The ve (1) 9	locity of a fre	ely fall (2)	ling body a 10.2 ms ⁻¹	fter 2s is (3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹	
50	A lorge	number of h	ıllets aı	re fired in a	II directions	with the same	e speed u	. The maximu	m area on
59.	the gro	und on which	these	bullets will	spread is				
						πu^2	7	πu	*
	(1) $\frac{1}{2}$	$\frac{u^2}{g^2}$	(2)	$\frac{Ru}{g^2}$	(3)	$\frac{m}{g^4}$	(4)	$\frac{\pi u}{g^4}$	
60.	The mi	nimum stopp	ing dis	tance for a	car of mass e tyres and t	m, moving wi he road is μ, ν	th a spee will be	ed v along a lev	el road, if
								v	
	(1)	<u>ν</u> 2μg	(2)	μg	(3)	$\frac{v^2}{4\mu g}$	(4)	2μg	
	(2) I (3) I	n the forward n the backwa	directi rd dire	ion on the f ction on bo	ront wheel a th the front	nd in the back and the rear w nd the rear wh	ward di heels	rection on the r	rear whee
62.	In a pe	erfectly inelas	tic col	lision, the	two bodies				
	100	strike and exp			(2)				
		mplode and e	xplode		(4)	combine and	d move t	ogether	
63.	Under		a cons	tant force,	a particle is	experiencing	a consta	ant acceleratio	n, then th
	(1)				(2)	positive	2000		
		negative	4		(4)	increasing u	miforml	y with time	
				20				¥.	
			0.10					XI	3.5
					11-A				

Set Code :	T2
Booklet Code :	A

(2) A does not imply B & B does not imply A

(4) 10s

(4) A does not imply B but B implies A

					1.0			•
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$	(3)	nT	(4)	T
67.	Whe	en temperature	increas	es, the frequen	cy of a	tuning fork		
	(1)	increases		• .				
	(2·)	decreases				¥		
	(3)	remains same	3	or .				
	(4)	increases or o	decrease	s depending or	the m	aterials		
68.	Ifas	simple harmon	ic moti	on is represente	d by a	$\frac{d^2x}{dx^2} + \alpha x = 0$, its	time p	eriod is
		•		•	a	y^2		
•	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$
69.				of 7500 m ³ It i hall should be	s requi	red to have rev	erberat	ion time of 1.5 seconds
	(1)	850 w-m ²	(2)	82.50 w-m ²	(3)	8.250 w-m ²	(4)	0.825 w-m^2

12-A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a

66. If a spring has time period T, and is cut into n equal parts, then the time period will be

(3) 8s

64. Consider the following two statements:

(1) A implies B & B implies A

(3) A implies B but B does not imply A

(2) 5s

height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)

Then

(1) 4s

A: Linear momentum of a system of particles is zero.B: Kinetic energy of a system of particles is zero.

Set Code :	T2
Booklet Code :	A

	# 4					Code :
					Booklet (Code :
70.	To absorb the sound in a hall which of the	he followi	ng are used			
	(1) Glasses, stores	(2)	Carpets, cur	tains	is .	
	(3) Polished surfaces	(4)	Platforms			Ŷ
71.	If N represents avagadro's number, then	the numb	er of molecul	es in 6 gr	n of hydro	gen at NT
	(1) 2N (2) 3N	(3)		(4)	N/6	
72.	The mean translational kinetic energy of	of a perfec	t gas molecul	e at the to	emperatur	e T K is
	$(1) \frac{1}{2}kT \qquad \qquad (2) kT$	(3)	$\frac{3}{2}kT$	(4)	2kT	
73.	The amount of heat given to a body whi	ich raises i	its temperatur	e by 1°C		
	(1) water equivalent	(2)	thermal heat			
	(3) specific heat	(4)	temperature	gradient		
74.	During an adiabatic process, the pressu absolute temperature. The ratio <i>Cp/Cv</i>		s is found to	be propo	rtional to t	he cube o
	(1) $\frac{3}{2}$ (2) $\frac{4}{3}$	(3)	2	(4)	$\frac{5}{3}$	
75.	Cladding in the optical fiber is mainly u	used to	v *			
	(1) to protect the fiber from mechani	ical stress	es		*	204
	(2) to protect the fiber from corrosion				66.	
	(3) to protect the fiber from mechani	cal streng	th			
	(4) to protect the fiber from electron				28	

Set Code :	T2
Set Code : [Booklet Code : [A

CHEMISTRY

76.	The	valency electron	ic co	nfiguration of I	Phosphe	orous atom (At.N	lo. 15) is
	(1)	$3s^2 3p^3$	(2)	3s1 3p3 3d1	(3)	$3s^2 3p^2 3d^1$	(4)	$3s^1 3p^2 3d^2$
77.	An	element 'A' of At.	No.12	combines with	h an ele	ment 'B' of At.N	0.17.	The compound formed is
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB
78.	The	number of neutr	ons pi	esent in the ato	om of 56	Ba ¹³⁷ is		
	(1)	56	(2)	137	(3)	193	.(4)	81
79.	Hyd	lrogen bonding in	wate	r molecule is r	esponsi	ble for		. A
	(1)	decrease in its f	reezi	ng point	(2)	increase in its	degree	e of ionization
	(3)	increase in its b	oiling	point	(4)	decrease in its	boilin	g point
								•
80.		ne HCl molecule,		100		- Committee of the Comm		
	(1)	purely covalent	(2)	purely ionic	(3)	polar covalent	(4)	complex coordinate
81.	Pota	assium metal and	potas	sium ions		8	41	
	(1)	both react with	water		(2)	have the same i	umbe	er of protons
	(3)	both react with	chlori	ne gas	(4)	have the same	electro	onic configuration
82.	stan		fthis	solution were p	ipetted	out into another f	lask ar	made upto 100 ml in a nd made up with distilled solution now is
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M
83.	Con	centration of a 1.	0 M s	olution of phos	sphoric	acid in water is		
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N
84.	Whi	ch of the following	ng is a	Lewis acid?				
	(1)	Ammonia			(2)	Berylium chlor	ide	
	(3)	Boron trifluorid	le		(4)	Magnesium oxi	de	
					14-A			

									Set	Code: T2
									Booklet	Code : A
85.	Whie (1) (2) (3) (4)	Potassium chlo Sodium acetat Magnesium su Calcium chlor	oride and a alphate a	nd potassiur cetic acid and sulphur	n hyd ic acid	roxid		er solution	on?	
86.		ch of the follow Acetic acid		an electroly Glucose	te?	(3)	Urea	(4) Pyridine	.
87.	E ₀ C	culate the Stand $u/Cu^{+2} = (-) 0.3$ (-) 1.0 V	34 V.							$a^2 = 0.44V$ and
88.	A so (1)	lution of nickel nickel will be H ₂ gas will be	chlorideposit	de was elec	trolys	ed us	ing Platinu Cl ₂ gas wil	m electro	odes. After o	cathode
89.	Whi	ch of the follow Cu	ing me		dergo		ation fastest Zinc	i? (4) Iron	- ()
90.	Whi (1) (3)	ch of the follow Ozone Potassium Ch		nnot be used	d for t		Calcium C	xychlori		
91.	term	ater sample sho is of calcium ca 1.0 ppm	rbonate		t is	*	of magnes	•	hate. Then, 2.40 ppr	
92.	Soda (1) (3)	a used in the L- sodium bicarb sodium carbon	onate	ess for softe	ning ((2)		rbonate o	lecahydrate (40%)	* .
93.	The (1)	process of cem sherardizing	entation (2)	n with zinc	powd	er is k	nown as metal clad	ding (4	electrop	lating
		*			1	5-A	N .			

94.	Carr	osion of a metal is fastest i	n			
	(1)	rain-water (2) acid	fulated water (3)	distilled water	(4) de-ionise	d water
95.	Whi	ch of the following is a ther	moset polymer?			
	(1)	Polystyrene	(2)	PVC		
	(3)	Polythene	(4)	Urea-formaldeh	yde resin	
		34		ă.	ž	9
96.	Che	mically, neoprene is				
	(1)	polyvinyl benzene	(2)	polyacetylene		
	(3)	polychloroprene	(4)	poly-1,3-butadie	ne	
2	2.					
97.	Vul	canization involves heating of	of raw rubber with			96
	(1)	selenium element	(2)	elemental sulphu		
	(3)	a mixture of Se and elemen	ntal sulphur (4)	a mixture of sele	nium and sulpl	nur dioxide
98.	Petr	ol largely contains				
	(1)	a mixture of unsaturated h	ydrocarbons C ₅ -	C ₈		,
	(2)	a mixture of benzene, tolu	ene and xylene	¥	1 × 1 1	
	(3)	a mixture of saturated hyd	rocarbons C ₁₂ - C	14		
	(4)	a mixture of saturated hyd	rocarbons C ₆ - C ₈			
	4					
99.	Whi	ch of the following gases is	largely responsil	ole for acid-rain?		92
	(1)	SO, & NO,	(2)	CO2 & water vap	our	
-	(3)	CO ₂ & N ₂	(4)	N ₂ & CO ₂		
100.	BOI	O stands for	2			38-0
	(1)	Biogenetic Oxygen Demai	nd (2)	Biometric Oxyge	en Demand	
	(3)	Biological Oxygen Demar	nd (4)	Biospecific Oxy	gen Demand	St. 160

Set Code :	T2
Booklet Code :	A

MECHANICAL ENGINEERING

101.	Am	ortise gauge is a						,	
*	(1)	planning tool			(2)	striking tool			
	(3)	marking tool			(4)	boring tool			
					XIX				
102. A saw which cuts wood during the return stroke of the saw is known as									
	(1)	push saw	(2)	pull saw	(3)	rip saw	(4)	hand saw	
103.	In a	shaper, tool head	d cons	ist of					
	(1)	clapper box			(2)	work holding	device		
	(3)	collet			(4)	four sided to	ol post		5/
104.		swing diameter te lathe.	over t	he bed is	t	he height of the	e centre	measured	from the bed
15.	(1)	equal to			(2)	one and half t	imes		
	(3)	twice		ř.	(4)	thrice			
105.	The	rake angle requi	red to	machine bras	ss by HSS	tool is			
	(1)	0°	(2)	10°	(3)	20°	(4)	-10°	
								-	
106.	The	binding material	used	in cemented of	carbide to	ool is		*	
	(1)	tungsten	(2)	chromium	(3)	silicon	(4)	cobalt	
			100						
07.		relation betweer e of n depends up		life(T) and cu	itting spe	ed (V) is VT ⁿ	= const	ant. In this	relation, the
	(1)	work material			(2)	working cond	itions		
	(3)	tool material		•	(4)	type of chip produced			
		(47			6				
					17-A	61			· (MEC)

Set Code :	T2
Booklet Code :	A

									- 1	
108	. The	usual value of th	e poir	nt angle of a drill	lis	18				
	(1)	60°	(2)	80°	(3)	112°	(4)	118°		
						9				
109.	Dril	ling is an example	e of	* 10						
	(1)	Orthogonal cut	ting	,	(2)	Oblique cutting	, ·			
	(3)	Simple cutting			(4)	Uniform cuttin	g			
							÷			
110.	The	The top and sides of the table of a shaper usually have								
	(1)	I-type slots	(2)	L-type slots	(3)	T-type slots	(4)	H-type slots		
111.	In la	apping operation, the amount of thickness of metal removed is								
	(1)	0.005 to 0.01 n	nm		(2)	0.01 to 0.1 mm				
	(3)	0.05 to 0.1 mm		14	(4)	0.5 to 1 mm		- K		
						•				
112.		process of remo	ving 1	metal by a cutter	r whic	h is rotated in th	e san	ne direction of travel	of	
	(1)	up milling	(2)	down milling	(3)	face milling	(4)	end milling	1.0	
113.	CNC	CNC drilling machine is considered to be								
	(1)	P.T.P controlled	mach	nine	(2)	Continuous path controlled machine				
	(3)	Servo controlle	d mac	hine	(4)	Adaptive contro	olled r	nachine		
						xi				
114.	Seam welding is best adopted for metal thickness ranging from									
	(1)	0.025 to 3 mm	(2)	3 to 5 mm	(3)	5 to 8 mm	(4)	8 to 10 mm		
115.	In welding, flux is used to									
	(1)	improve melting			(2)	obtain high tem				
	(3)	mix the metal at	joint		(4)	protect molten	metal	from atmosphere		
	90									